Products Finishing

DEC 2013

Products Finishing magazine is the No. 1 industrial finishing publication in the world. We keep our readers informed about the latest news and trends in plating, painting, powder coating, anodizing, electrocoating, parts cleaning, and pretreatment.

Issue link: https://pf.epubxp.com/i/213540

Contents of this Issue

Navigation

Page 33 of 51

CLINIC POWDER COATING Blisters in the Powder Film Q. We have to scrap more parts than we like because of the defect shown in the image and described below. 1) Have you ever seen this defect before? 2) What do you think causes the defect? 3) How do other people cure this problem? 4) If others are not having this problem, what is different about my process that causes it? Over the past several years, we have had this coating defect resembling a crater randomly show up on coated parts. After examining countless number of these defects, no substrate abnormality has been found under the paint on the part, including scale, gouges or substrate craters. Paint adhesion in the defect area also has been excellent. If it were not for the coating disfigurement and color shade difference on lighter parts, no one would know there was a cosmetic defect. The material is 11-gauge hot-rolled, pickle and oiled, temper-rolled steel. Parts are sprayed with a solvent degreaser made up of 13 percent dipropylene glycol methyl ether and 87 percent petroleum hydrocarbon. A dwell time of five minutes is allowed to break down the molecular composition of the soil, and then a solvent-saturated towel is wiped across the part to loosen the soil. Next, a clean, dry towel is used on each part to remove the loose soil and solvent. The oil/grease-free, dry part is then sanded to remove any metal defects or contamination, including defects such as weld splatter, rust, weld burn, polymerized hydrocarbons, surface scratches and surface gouges. Parts are then sprayed again with a solvent and the first step is repeated to remove any tenacious soil that may be a byproduct of the sanding process. (Contaminates such as silica, metal fines and environmental shop soils could produce a paste-like soil from the heat and rotation action associated with the sanding process.) Parts finally are placed on a monorail conveyor line and passed through an 11-stage washer that is 160 feet long. The cleaning and pretreatment process parameters are: Stage 1 – Alkaline cleaner at 145°F Stage 2 – Fresh-water rinse Stage 3 – Fresh water Stages 4, 5 and 6 – Cascading fresh-water rinse 32 DECEMBER 2013 — pfonline.com pfonline.com/experts Stage 7 – Iron phosphate cleaner/conversion coater Stages 8 and 9 – Fresh-water rinse Stage 10 – RO-water rinse Stage 11 – RO-halo rinse The MSDS sheet on the rust preventative included a vague description that it is formulated from petroleum-based mineral oils. When the steel is being cut or welded, the amount of smoke and color suggests the formulation contains a higher carbon content than 17 carbon atoms per molecule. Additionally, the oil slightly strings RODGER TALBERT when tested between Consultant the finger tips, which powdercoating@pfonline.com could indicate the presences of polymers in the rust preventative. Parts are dried at 275°F for 20 minutes, and a polyester TGIC powder is applied by an automatic paint booth. A manual paint booth is used for paint touch-up. Parts are then cured in a long-wave infrared oven for 60 seconds followed by a convection cure time of 60 minutes at 400°F. We never see this type of problem on heavier-gauge material, only pickled and oiled material of 11 gauge and higher. Cold-rolled material has not shown this problem. The job we ran prior to the pictured defect part was fine as were the jobs directly behind it, however, 12 out of 20 parts processed on this job displayed the pictured disfigurement to some degree. Therefore, we ruled out the washing and pretreatment process and determined that the source of the problem had to be the material the part was made from. This type of defect has never shown any bare metal. The surface tension of the part was not compromised prior to the powder application or the jelling process in the oven. Therefore, we believe the material could potentially become the source of the problem during the cure cycle. We also ruled out trapped water as a potential cause because there were no areas to entrap water on the pictured part. Furthermore, the duration of dwell time and heat in the oven should evaporate any water. Although other liquids like petroleum-based oils may not evaporate, the deformity showed no characteristic signs of organic contamination like pits or "fish eyes" that are normally associated with hydrocarbon-contaminated coated surfaces. I believe the problem could be sub-surface or capillary contamination in the steel, based on the assumption that the steel was pickled and oiled prior to the temper-roll process. Reducing the steel thickness by 0.5-2.5 percent (industry standards) to elongate and hide surface defects could trap

Articles in this issue

Links on this page

Archives of this issue

view archives of Products Finishing - DEC 2013